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The qualitative TSH theory, put forward by Stone, is used as a basis for an extended tensor surface harmonic (ETSH) calculation 
of the electronic structure and bonding in clusters. As in TSH, a cluster is treated as pseudospherical but in ETSH individual 
orbital energies are calculated, including u-a interaction effects. We test the assumptions of TSH theory and find that whereas 
inclusion of u--?r interaction is necessary for correct electron counts, the tight-binding approximation does not lead to incorrect 
results. The results are compatible with Stone’s qualitative TSH theory but are of extended Hiickel accuracy. Energy levels of 
the correct number and (point group) degeneracy are obtained for boranes and polyhedranes, giving theoretical support for the 
empirical electron-counting rules and rationalizations of departures from them. TSH concepts thus expose the factors in the success 
of semiempirical EH and MNDO calculations on main-group clusters. 

1. Introduction 
Cluster compounds of main-group and transitional elements 

exercise a continuing fascination for experimental and theoretical 
The most comprehensive qualitative description of 

bonding in clusters to date has been provided by Stone’s tensor 
surface harmonic (TSH) theory.3” This uses a free-electron 
molecular orbital approach to determine cluster wave functions 
and calculates average energies for groups of orbitals by using 
the simple Hiickel approximations, assuming a spherical distri- 
bution of atoms in the cluster. TSH theory has several strong 
points. It yields analytical energy expressions from which it is 
possible to derive the empirical electron-counting for 
boranes and transition-metal and other clusters. It rationalizes 
the prevalence of deltahedral structures. Most important of all, 
the pseudospherical symmetry labels give a language for the 
qualitative discussion of cluster bonding that may still be useful 
in interpreting more quantitative calculations.I0 The basic 
perception embodied in the TSH labeling of orbitals is that when 
counting nodes in the MOs we need to distinguish between nodes 
intrinsic to the component atomic orbitals and the nodes between 
atoms which determine the bonding characteristics of the orbital. 

However, the simple form of TSH theory has some less desirable 
features. By grouping MOs of a given total angular momentum 
together in energy, it gives degeneracies higher than are actually 
present or possible in the orbital energies of real (nonspherical) 
clusters. An account of the splitting of these degeneracies would 
need to be added for a correct picture of most clusters. The TSH 
prediction of e.g. the Wade n + 1 rule for closo-boranes invokes 
u-a interaction but without explicit calculation of its effects. In 
the absence of this interaction, too many bonding MOs would 
occur for the larger ( n  > 10) closo-boranes. Use of a tight-binding 
scheme for polyhedral clusters has also been criticized.” 

Stone’s TSH theory has found wide acceptance as a general, 
qualitative account of clusters. It is important, therefore, to 
investigate those features of the theory that produce the anomalies 
noted above and to correct them, where possible. That investi- 
gation is the main aim of the present paper. 

Speciftcally, we construct a scheme based on the pseudospherical 
model of a cluster but avoid the further approximation of multiple 
degeneracies in the energy levels. This is done by calculating an 
energy for each individual orbital, rather than the weighted average 
energy used in ref 3-6. We take the MOs from the free-elec- 
tron-on-a-sphere model problem but introduce u-a interaction 
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between them, as allowed even for a spherical cluster. Because 
we use the extended Hiickel parameterization of the Hamilto- 
nian,” the calculated energy levels show the correct degeneracies 
rather than the spuriously high degeneracies of the simple TSH 
expres~ions.~ The end result is a demonstration that the basic 
assumptions of Stone’s theory-that clusters are “spherical” and 
their MOs are harmonics-can be used to make quant i ta t ive  
predictions of electronic structure. Thus, numerical results a t  
about the extended Hiickel level of accuracy are obtained from 
a guessed wave function. The conceptual value of ETSH is that 
it exposes the reason for the success of EH,’* MND0,’O and a 
variety of other methods in treating the systematics of main-group 
clusters. 

In section 2 we give the mathematical structure of extended 
TSH theory and compare it to the original TSH theory of S t ~ n e . ~ . ~  
Section 3 gives some practical details of calculations. Our results 
for the boranes are given in section 4 and for some polyhedral 
hydrocarbons are given in section 5 .  Extension to transition-metal 
clusters is discussed in section 6, and our conclusions are sum- 
marized in section 7 .  

2. Mathematical Aspects 

In a conventional molecular orbital treatment of the bonding 
in clusters, wave functions are obtained as linear combinations 
of atomic orbitals, by finding the eigenvectors and eigenvalues 
of an electronic Hamiltonian. Free-electron molecular orbital 
(FEMO) models short-circuit this often lengthy computation by 
using the solutions of some particle-in-a-box problem to set the 
LCAO coefficients in advance. FEMOs from an appropriate 
model problem have the correct nodal structure and may be useful 
in qualitative discussions of bonding. 

Stone uses the scalar, vector, and tensor surface harmonics, all 
of which may be derived from solutions for the free motion of an 
electron on a ~ p h e r e , ~ J ~ , ’ ~  to construct approximate cluster M O S . ~  
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This procedure generates an infinite, nonorthogonal, overcomplete 
set of functions from which a finite subset is to be selected. A 
summary of our version of the TSH calculation is presented in 
the current section. 

In a main-group cluster, each (first-row) atom is assumed to 
contribute three basis functions to the skeletal bonding: one 
inward-pointing sp" hybrid, ui, and two tangential p orbitals, a: 
and a:, directed along lines of longitude and latitude, respectively. 
Linear combinations of these functions give MOs of u, a, and ?r 
type3 

X/m' = Cc/m(fli,4i)ui (1) 

(2) 

(3)  

where the angular functions C, V, and Y are modified scalar, 
"even" and "odd" vector harmonics, re~pectively.~ I and m are 
the usual angular momentum quantum numbers with I = 0, 1, 
2, ... for u orbitals, but I = 1,2, ... for a and ir. Stone has tabulated 
the complex forms of V and 0 for I 5 4,j but we will use the real 
forms found by taking sin m4 and cos m+ combinations in place 
of exp(fin4).I5 

A finite cluster with a (u,a) basis on each atom has 3n inde- 
pendent MOs. On physical grounds we retain the first n inde- 
pendent u, a, and ir orbitals, respectively (counted in order of 
increasing I ) ,  and discard the rest. The discarded functions are 
either null (i.e. vanish at  all atomic sites) or linear combinations 
of the functions already counted. It is always necessary to discard 
some members of the highest allowed I shell for either u or a. 
Problems can arise in Stone's original treatment if the discarded 
members are non-null as e.g. for the tetrahedral c l ~ s t e r . ~  

Individual orbital energies may be calculated for the approx- 
imate molecular orbitals. If the u set is taken as an example, the 
energy of the (ulm) function is 

I 

x / m r  = E~/,'(ei,+i)~is + v/m'(fli*+i)aP 

X/m* = Cp/m'(ei,4i)*is + p/m'(eiAi)* i '  

i 

i 

W i m "  = S X i m " * P X / m "  d7/ S X / m " + X / m "  d7 (4) 

where P i s  an effective one-electron Hamiltonian. If we substitute 
from (1) and abbreviate 

Fij" = d7 Fiie = a' 

Siju = So*p,dT Sii = 1 (5) 

ci = C/m(fl i ,4i)  
the energy becomes (for real wave functions) 

Wimu = (a"cc? + 2ccicjFij")/(cc? + 2ec1cjSij) ( 6 )  

Now if we introduce the extended Huckel parameterization of 
the Hamiltonian and set matrix elements of F from the corre- 
sponding overlaps" 

I i<j 1 i<j 

F," = j/zk(Fi: + Fjj")Sij = ka"Sij (7) 

where k is a constant parameter that is traditionally set to 1.75.16 
Thus 

(8) Wlm" = a y 1  + kx, ,") / ( l  + Xim")  

where 

xima = 2ZCiC,Sij/CC? (9) 
i<j I 

In a similar way the a and ?r energies may be written in terms 
of dimensionless x parameters: 
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W i m r  = a"( 1 + kxj,")/(  1 + xlms) 
(10) 

The x parameters have been introduced to give energy expressions 
formally similar to those in extended and simple Hiickel theories.'' 

Even within the assumed spherical symmetry of the cluster, u 
and a are not good quantum labels, because L" and L" have the 
same symmetry and are mixed by the Hamiltonian. L" sets are 
of opposite parity to L" and therefore do not mix with u or a 
functions in the spherical limit. As I and m (or I ,  Iml, and the 
sin/cos label for real functions) are conserved in spherical sym- 
metry, the effect of u-a interaction on the energies may be found 
by diagonalizing the 2 X 2 block of the Hamiltonian connecting 

Wim" = a"( 1 + kXlm") /( 1 + .f/,*) 

X/m' and X/m" 

Wlm'T - E Wan - €Sun 

W'T" - €son W,," - € 
1 = o  (11) 

so that the final energies Wlm+ and WIm- are roots of a quadratic 
equation (+ denotes an energy lowered by the interaction and - 
an energy raised by the interaction). The energies W,,+, W/m-, 
and wim* have taken into account all interactions allowed in the 
spherical symmetry group. For the real point group there may 
be further interactions as I and m are no longer good quantum 
numbers and as the a, ?r distinction becomes blurred, but these 
fall outside the scope of a TSH-type model. 

The analysis developed so far differs in several important re- 
spects from Stone's original TSH t h e ~ r y . ~ - ~  The energies cal- 
culated from eq 1-1 l relate to individual molecular orbitals where 
TSH would produce only average energies for each I shell. Al- 
though the coefficients of the wave function are chosen for a 
pseudospherical cluster, the actual (lower) molecular symmetry 
is reflected in the overlap matrix S and in the angles (ei, q+]. 
Therefore, the degeneracy pattern of the cluster MOs is the correct 
one for the molecular point group and is not the 21 + 1 degeneracy 
of the spherical harmonics. Similarly, differences in radial dis- 
tances are reflected in S so that the current treatment is expected 
to give results more or less compatible with extended Huckel 
calculations for a variety of polyhedra and to tolerate considerable 
departures from full spherical pseudosymmetry. Substitution of 
main-group heteroatoms into the cluster is another type of sym- 
metry breaking that could be incorporated without difficulty. 

Given a set of individual MO energies, it is possible to recon- 
struct the Stone average energies by taking the weighted sum3 

W/X = E w / m h S X / m h * X / m  m d T / ~ j X / m ~ * X / m ~  m d7 (12) 

x = u, A, ?r 

In addition the average after u-a interaction may be defined (A 
= + and - in (12)), so that it is possible to take quantitative 
account of the interaction and check conclusions about the binding 
based on qualitative  argument^.^-^ 

Stone's compact analytical expressions for the average energies 
without u-a interaction3 are made possible by two additional 
assumptions. The first is that of simple Hiickel theory-counting 
only interactions between nearest neighbors. The second is to 
replace the angular separation wij of any pair of neighbors by a 
single average angle. One of the major successes of TSH is the 
conclusion that "other things being equal" the most favorable 
structure for a cluster will be a deltahedron because this maximizes 
the number of nearest-neighbor  interaction^.^.^ The qualification 
in the last sentence is an important one, since not all clusters adopt 
deltahedral structures. Furthermore, a naive application to 
nido-boranes would suggest that the "missing" vertex would be 
the one of lowest coordination number to maximize the number 
of remaining edges, and not the highest-coordinate vertex as 
observed and as predicted in TSH by more detailed but qualitative 
 argument^.^ 

The prediction of deltahedral geometries rests on the simple 
Huckel or "tight-binding" approximation, which has been criticized 
by Hoffmann and Lipscomb." The extended Hiickel paramet- 
erization used in the present work includes both nearest-neighbor 
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and cross-cage interactions and is not subject to the same criti- 
cism. 

In the present section we have shown how to modify the TSH 
calculation to give a new scheme (ETSH) for semiempirical 
calculation of molecular electronic structure. The results are 
expected to be of the extended Hiickel type and to have the correct 
degeneracy but still remain within the conceptually useful TSH 
classification. Some applications to boranes and other clusters 
follow. 
3. The Program 

A computer program implementing the new ETSH treatment 
was written to interface with the standard FORT ICON^^ extended 
Huckel program. For any cluster two choices must be made: of 
coordinates and of u, T basis. The origin of coordinates is fixed 
at  the center of mass of the heavy atoms, and the z axis is the 
principal rotation axis of the molecular point group. Although 
exact MO results must be invariant under coordinate transfor- 
mations, the TSH expressions contain an implicit dependence on 
the coordinate frame through the angles Bi, 

Borane clusters BnH:- contain strong two-electron B-H bonds 
which, to a first approximation, are not involved in skeletal 
bonding. Out of the 2s2p set on B, therefore, we project an exo 
sp hybrid to form the bond, leaving a u endo sp hybrid and two 
T tangential p functions for skeletal bonding. This is similar to 
the in-surface-radial factorization of ref 1 1. Standard extended 
Hiickel STO exponents and a parameters are used. 

An overlap matrix is formed for the skeletal basis and the xu, 
x", and f*  parameters, and hence energies are calculated for all 
harmonics with 1 I 3. All 2 X 2 u-T interaction matrices are 
diagonalized, yielding the final set of MO energies. Averages of 
the Stone type are also computed for each I shell before and after 
u-T interaction. 

A point that requires some discussion is the method of selecting 
just 3n MOs from the infinite TSH basis. Null functions are easily 
identified and cause no problem. For other cases, a criterion of 
linear independence is required. If each normalized candidate 
MO x is written as a linear combination of the 3n basis functions 
I@,) 

3n 

i= 1 
xlml = (13) 

we can define a "scalar product" matrix 

PIJ = &,la: 
I 

As one works up from low 1, any function that is retained may 
be used to cast out higher 1 functions by reference to the P matrix. 
In general, functions with highest PIJ are cast out until the ap- 
propriate number remain; this will sometimes entail retention of 
functions with PIJ near 1 (though never Bl),  but the apparently 
low degree of independence does not seriously affect the resulting 
MO energies. 
4. Boranes 

We have carried out calculations of the skeletal MOs and orbital 
energies for the closo-boranes B,H:- (n = 2, ..., 12) using the 
ETSH treatment. These molecules adopt deltahedral structures,' 
and for purposes of comparison we have idealized the geometries 
to equilateral polyhedra with R B B  = 170 pm and R B H  = 119 pm. 
Note that these are not particularly "spherical" clusters in some 
cases, e.g. for n = 1 1. Standard E H  parameters and exponents 
were used. Our choice of u sp hybrid leads to a" = -1 1.85 eV 
and a" = -8.5 eV. Orbital energies from ETSH and E H  calcu- 
lations on these clusters are given in Table I. Before considering 
the results in detail, it is important to establish how far they are 
consistent with Stone's simpleHucke1, average-energy calculations. 
In Figures 1 and 2 the weighted average energies of each con- 
tributing I shell of MOs are plotted as a function of cluster size 
both before (Figure 1) and after (Figure 2) u-T interaction. To 
facilitate comparison with Stone's graphs (Figures 1 and 2 in ref 
3 or 2 and 6 in ref 4), the horizontal scale is ( T / w )  - 1, where 
w is the average angular separation of nearest neighbors. The 
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Figure 1. Energies of ETSH cluster MOs for closo-boranes in the av- 
erage energy approximation without u--?r interaction. The F" curve is 
hidden under P" and P" but is an approximate reflection of F* in the 
nonbonding line. See text for description of scales. 

A W o n / 2 e  (eV) 

- 1  n 
2. 3 4  s 6 7 8 9  I O ~ I I L  

Figure 2. Energies of ETSH cluster MOs for closo-boranes in the av- 
erage energy approximation including u--r interaction. See text for 
discussion of scales. 

scale is actually marked in terms of n for the equilateral deltahedra. 
The vertical scale is in eV and represents the bonding energy 
divided by the average coordination number of a vertex 

y = (Wx - ax)/(2e/n)  

where e is the number of edges of the polyhedron. 
Considering first Figure 1, we see that our plot is essentially 

a discretization of the continuous curves which in ref 3 were 
obtained from analytical expressions. The ETSH approach in- 
cludes all cross-cage interactions whereas the simple Hiickel 
approximation used in ref 3 neglects them. The similarity of our 
Figure 1 and Stone's graphs is evidence for the view" that such 
interactions are not as important as has been implied in some 
recent models.'* 

(17) Housecroft, C. E.; Wade, K. Inorg. Chem. 1983, 22, 1391 
(18) Fuller, D. J.; Kepert, D. L. Inorg. Chem. 1983, 21, 163. 
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Table I. ComDarison of ETSH and EH Energies for closo-Boranes" 

-6.246 (X2) P*l" -6.246 -6.246 (X2) P*1* -6.246 -8.704 (X2) Do", Do" -8.704 

-9.820 (X2) P+I+ -9.820 -10.492 (X2) P*lc -10.480 -11.304 (X3) P+ -1 1.384 
-19.658 S" -15.809 -10.687 PO+ -10.687 -21.885 S" -17.909 

... ... ... ... ... ... ... ... ... 

-20.940 S" -1 7.148 

-5.623 (X2) D+l* -5.780 -3.726 (X3) D*,-Zu -3.726 -4.439 (X2) Dt2* -4.439 
... ... ... ... ... ... ... ... ... 

-10.101 (X2) D*I+ -10.096 -10.609 (X3) D+1-2+ -10.609 -10.598 (X2) D*2+ -10.675 
-11.313 (X2) P+j+ -11.403 -12.007 (X3) P -12.597 -10.705 (X2) D*;I+ -10.688 
-12.509 PO+ -13.240 -22.906 S" -18.575 -10.503* PO+ -1 1.275 
-22.447 S" -18.246 -12.838 (X2) P*l+ -13.981 

-23.228 S" -18.690 

BsHs2- (D2J BgH?- (D3d B10H102- (D4d)  

EH ETSH EH ETSH EH ETSH 
-6.838 D2c* -6.744 -6.865 F3c" -7.257 -4.790 (X2) F+l* -5.315 

... ... ... ... ... ... ... ... 
-9.470 DZC+ -9.713 -9.301 F+3r+ -9.268 -9:870 (X2) F+I+ -9.993 

-10.613 (X2) D+it -10.935 -10.732 (X2) D*,+ -10.921 -10.855 (X2) D*I+ -1 1.234 
-1 1.36* Do+ -11.133 -11.013 (X2) D*2+ -11.409 -11.177 (X2) D+2+ -1 1.297 
-1 1.036 D2s+ -11.231 -1 1.369 DO+ -11.485 -12.051 DO+ -12.659 
-12.182 (X2) P*l+ -12.910 -12.189 Po++ -13.317 -12.564 (X2) P,1+ -14.030 
-13.105 PO+ -14.750 -12.927 (X2) P*I -14.489 -13.156 PO+ -15.432 
-23.438 S" -18.824 -23.615 S" -18.928 -23.775 S" -18.990 

-6.133 F2sr -5.576 -2.499 (X4) F*lf2" -2.449 

-9.716 F+ -10.087 -10.654 (X4) F*i*z+ -10.654 
-10.15 1 -10.151 -1 1.436 (X5) D+ -11.931 

-15.511 
-10.628 D+ -11.192 -23.906 S" -19.101 
-1 1.026 -1 1.475 
-1 1.355 -11.551 
-1 1.502 -12.037 
-1 1.514 -12.067 
-1 2.21 9 P+ -13.695 
-13.071 -14.892 
-13.492 -15.793 
-23.891 S" -19.037 

... ... ... ... ... ... 

-10.329 -10.659 -13.187 (X3) P+ 

"All energies are in eV, and degeneracies are indicated in parentheses. HOMO and LUMO levels are separated by the dotted line. Asterisks 
denote an ETSH MO out of the EH sequence. The cosine and sine harmonics are denoted by subscripts c and s or, for a degenerate pair, f. 

S' is always bonding. P" orbitals are initially highly antibonding 
but are bonding from n k 9, dropping below P* for n 12. The 
T levels are always bonding and coalesce for large n so that P", 
D", and F" become indistinguishable on the scale of Figure 1. The 
high-energy e orbitals become more antibonding as n increases 
and are more widely spaced than T .  The most dramatic feature 
of Figure 1 is the switch from highly antibonding to strongly 
bonding of P", leading to apparently n + 4 bonding MOs for large 
n. Stone has argued4 that the n + 1 rule is restored by considering 
(T-T interaction, and in Figure 2 we see that this is indeed the case. 
The main effect of the interaction is to push a P level out of the 
bonding set a t  large n, and incidentally to spread the energies of 
the other bonding orbitals. 

Other treatments" have had the same problem of "extra" 
bonding orbitals when (M interaction is neglected, but this is the 
first explicit calculation of the effect demonstrating that u-T 
interaction does indeed restore the electron count to the Wade's 
rule total for borane deltahedra. 

After u-T interaction the orbitals lose the pictorial simplicity 
of the surface harmonics. The W+ bonding combination of P" 
and P" is mainly T in character for small n but becomes more 
u-like as n increases. This change in character is a t  the root of 
the confusion over the correct labeling of the bonding P set.1° 

Figures 3 and 4 show the fully symmetry-split energy level 
patterns for the deltahedral boranes calculated by the ETSH 

method. For a given 1 the broad trend follows the average-energy 
curves of Figure 2, with bonding levels becoming more stable, and 
antibonding levels less stable, for increasing n. As the envelopes 
show, component sublevel energies oscillate with increasing am- 
plitude about an average curve, coming together at clusters of high 
point group symmetry. Overlapping of the different 1 envelopes 
takes place for the highly antibonding W- orbitals. The ap- 
proximate mirror relationship between the 7r and e levels found 
in TSH theory6 persists even after u-T interaction and splitting 
of the spherical degeneracies as a relationship between the L+ and cr energies. Thus we have a description of the bonding that follows 
Stone's theory in broad outline but gives more details of the energy 
level pattern. 

Inspection of Figure 3 shows at once the advantage of calcu- 
lating individual energies instead of the weighted averages. 
Consider the tetrahedral cluster. The n + 1 rule does not apply 
for n = 4: a tetrahedral cluster may use four bonding pairs as 
in B4C14 or six as in P4. Our calculation shows that the DOr/DOr 
degenerate pair (E in Td) is bonding by less than -0.5 eV for 
a B4 cage, and it is therefore reasonable either to occupy these 
orbitals as in P4 or to leave them empty as in B4C14. This con- 
clusion cannot be reached in the original TSH theory without 
"special pleadingm4 because (as Figure 2 shows) it predicts that 
D" and Dr are split, one bonding and one antibonding. As Stone 
has e ~ p l a i n e d , ~  the average energies are contaminated by con- 
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n 
2 4 b 8 I O  I2 

Figure 3. Energies of ETSH cluster MOs (bonding) for equilateral 
n-vertex closo-boranes. Degeneracies are represented by the appropriate 
number of dots. 
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Figure 4. Energies of ETSH cluster MOs (antibonding) for equilateral 
n-vertex closo-boranes. Degeneracies are represented by the appropriate 
number of dots. 

tributions from non-null but nonindependent P" and P functions. 
In our approach these functions are discarded and the correct 
(degenerate) energies are found. Contamination of the same sort 
occurs for the highest, partly used I shell for n = 5, 9, 10, and 
11 in the original TSH theory but does not change the electron 
count in these cases. 

n = 8 and n = 9 clusters also have single, isolated energy levels 
near the nonbonding level. If these orbitals are filled, the cluster 
has n + 1 skeletal pairs as in B,H;- but they can be left empty 
as in B,Cl, or B,Br,. Our ETSH treatment is thus able to give 
a rationalization of the known stable polyhedral boron halides 

E /eV 
- 8  t 

- I 0  t 
-12! 

- l 4 }  
I 
I 

F "  

D" 

I .-:-... 
.-.. -*-,.-;:-..- \:.-h. .... ._..- .. - I 6  t 

-IS I "? l(\ 

n 
Figure 5. Energies of bonding MOs for the equilateral n-vertex closo- 
boranes in the extended Huckel approximation. TSH labels are used to 
classify the MOs. "Skeletal" and "BH" MOs are included. Compare 
Figure 3. 

(B4C14, B8C18, B9C19, and B,Brg19-22) because it treats individual 
energy levels. 

As we will see below, the one closo-borane where the ETSH 
and E H  HOMOS differ is the n = 7 cluster. In E H  a Po level 
lies -0.2 eV above the Dk2+ doubly degenerate level so that the 
HOMO is nondegenerate. It is interesting to note, therefore, the 
existence of an unstable but diamagnetic species B7Br7.23 On 
the other hand, our calculations predict that B,oBrlo23 does not 
have a regular closo deltahedral structure. 

The approximate mirror relationship between L+ and Lr en- 
ergies suggests that the n = 8 and n = 9 clusters may also tolerate 
occupation of the low-lying nondegenerate antibonding orbital to 
give n + 2 skeletal pairs. Bigs+24 is an example of such a cluster. 
Wade and ONeill have discussed the existence of closo clusters 
with n, n + 1, and n + 2 skeletal pairs in terms of the HOMO 
and LUMO degeneracies and commented on the unreliability of 
localized bond schemes in this c o n n e c t i ~ n . ~ ~ - ~ ~  

As the modified ETSH treatment uses the extended Hiickel 
parameterization, it is desirable to compare the results with the 
exact eigenvalues of the same Hamiltonian by running an E H  
calculation. The E H  procedure uses 5n atomic orbitals (B 2s, 2p, 
H 1s) and therefore generates 2n more MOs than the purely 
skeletal ETSH, u, T ,  and ?r sets. The "extra" MOs are all of u 
symmetry, resulting from addition of exo B hybrids and H 1s 
orbitals to the basis. We would expect to find n extra bonding 
and n antibonding MOs. Figure 5 shows the bonding MOs found 
by EH calculations on the n-vertex closo-boranes, grouped ac- 
cording to TSH labels. For purely formal electron-counting 
purposes the typical (Le. n # 4) cluster has n BH bonding MOs 

(19) Urry, G.; Wartik, T.; Schlesinger, H. I. J .  Am. Chem. SOC. 1952, 74,  
5809. 

(20) Lanthier, G. F.; Massey, A. G. J .  fnorg. Nucl. Chem. 1970, 32, 1807. 
(21) Lanthier, G. F.; Kane, J.; Massey, A. G. J .  fnorg. Nucl. Chem. 1971, 

33, 1569. 
(22) Reason, M. S.; Massey, A. G. fnorg. Chem. 1975, 37, 1593. 
(23) Kutz, N. A. Morrison, J. A. Inorg. Chem. 1980, 19, 3295. 
(24) Corbett, J. D. Prog. Inorg. Chem. 1976, 21, 140. 
(25) O'Neill, M. E.; Wade, K. Inorg. Chem. 1982, 21, 461. 
(26) ONeill, M. E.; Wade, K. THEOCHEM 1983, 103, 259. 
(27) O'Neill, M. E.; Wade, K. Polyhedron 1984, 3, 199. 
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and n + 1 skeletal bonding MOs. This turns out to be a fairly 
accurate description of the detailed composition of the MOs. 

Inspection of the orbital composition indicates that the lower 
S" orbital is mainly a skeletal bonding combination of B 2s orbitals. 
It lies -4 eV lower than the ETSH S because (i) it uses s rather 
than sp functions and (ii) it is pushed down by interaction with 
the S" combination of BH bonds. The lowest P set of MOs is 
dominated by terminal BH contributions for small n,  but there 
is increased skeletal character mixed in for large n. Next come 
D and F sets, which are almost entirely BH bonding, followed 
by the BH bonding S. The next n MOs are almost pure skeletal 
bonding, except that the P set gains BH character for large n. 
Thus we have a general order of energies 

S (skeletal) < P, D, F, S (BH) < P+, D+, F+ (skeletal) 

with some ambiguity in the naming of the P sets. This description 
of the M O  composition is consistent with Fenske-Hall approxi- 
mate SCF,28 MNDO,IO and SCC29 calculations on these clusters 
(the authors of ref 10 prefer to call the lowest P set skeletal). A 
similar order of skeletal and exo bonding MOs can be deduced 
from the EH calculations of Hoffmann and Lipscomb" on some 
of these clusters using 5n, 4n, and 3n basis functions. As we might 
expect for outward-pointing hybrids, the n dependence of the "BH" 
M O  energies in Figure 5 is rather flat. Note that the natural S, 
P, D, F order of BH MOs is distorted by interaction with the 
skeletal sets but that the general shape of the curves for BH MOs 
is what would be expected from TSH t h e ~ r y . ~ , ~ ~  

Table I gives skeletal M O  eigenvalues in both EH and ETSH 
approaches. For each E H  column the n orbitals above the lower 
S" are taken to be BH bonding and are omitted. In all cases the 
modified ETSH treatment gives the correct number and degen- 
eracy pattern of MOs with only minor differences in order. The 
energies of the HOMO and LUMO levels usually match the exact 
calculation to within -0.5 eV and, in high-symmetry cases, often 
give exact matches. Consequently the HOMO-LUMO energy 
separation is well modeled by ETSH. In high-symmetry cases, 
the composition of HOMO and LUMO is often determined by 
symmetry alone, e.g. for the D" and 0" levels of B6Hg2-, and then 
E H  and ETSH are in exact agreement. For any one cluster the 
match deteriorates as we move in either direction from the 
HOMO-LUMO gap. Three causes of numerical mismatch are 
(i) fixed sp hybridization, (ii) skeletal orbital mixings allowed 
within the point group but not in spherical symmetry, (iii) B-H 
terminal/skeletal orbital mixing. In the real cluster a different 
spx hybrid may be appropriate for each orbital and for each 
nonequivalent boron.30 The HOMO/LUMO levels are often pure 
p in character (because the u levels start at S" and "run out" first) 
and are therefore unaffected by this hybridization. 

However, it is important to note that, for the practical purposes 
of understanding bonding, comparing stabilities, and counting 
electrons, the ETSH results are of about extended Huckel standard 
and that most of the numerical errors w u r  away from the critical 
HOMO/LUMO part of the M O  diagram. 

As discussed earlier, the quantitative inclusion of m r  interaction 
is a crucial feature of our ETSH treatment. Two contrasting 
examples of the role of the interaction are given by B6H62- and 
BI2Hlz2-. Figure 6 shows, for the M O  diagram before 
and after interaction and illustrates the z components of P" and 
P" sets. In octahedral B6H62- the M O  diagram is qualitatively 
the same before and after interaction. The only allowed interaction 
is between the bonding P" set a t  -10.932 eV and the antibonding 
P" set a t  -4.200 eV, which are pushed apart to -12.597 and 
+19.252 eV, respectively. The HOMO and LUMO levels are 
unaffected, and the number of bonding MOs remains at  7 .  

For B12H122-, however, the picture is quite different. As Figure 
7 shows, by the time the number of vertices has increased to 12, 

1 n n 

Fowler and Porterfield 

(28) Stone, A. J., unpublished work. 
(29) Pelin, W. K.; Spalding, T. R.; Brint, R. P. J .  Chem. Res., Synop. 1982, 

120. 
(30) Brint, R. P.; Pelin, K.; Spalding, T. Inorg. Nucl. Chem. Left. 1980, 16, 

391. 
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Figure 6. u-r interaction for B6Hs2-. The MOs shown are z components 
of the P" and P" sets before interaction. The MO energy diagram is 
shown before (left) and after (right) u-r interaction. 
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Figure 7. u-r interaction for Bl2H,2-. The MOs shown are z compo- 
nents of the P" and P" sets before interaction. The MO energy diagram 
is shown before (left) and after (right) u-r interaction. 

both P" and P" are bonding. Each P, component has regions of 
bonding character (in the "tropics" of the pseudosphere) but is 
antibonding across the equator. Thus before interaction there are 
bonding P" (-14.826 eV) and P" sets (-10.812 eV) leading to 16 
bonding MOs. The allowed u-?T interactions are P'-P" and 
D'-D", causing an unimportant stabilization of the D bonding 
set from -1 1.350 to -1 1.931 eV but ejecting a complete P set to 
5.493 eV (where it is antibonding by 14 eV) and lowering P+ to 
-15.511 eV. After interaction the bonding M O  count is down 
to the correct 13. 

Having shown that the modified TSH treatment gives very 
satisfactory results for the closo-boranes, we have applied the same 
method to some nido and arachno clusters. StoneS has given a 
qualitative discussion of the TSH model for these clusters by 
considering the changes in the spherical orbitals on abstraction 
of a vertex from a closo molecule. By comparing the open face 
to a conjugated system, he rationalizes the preference for nido 
clusters to be related to closo structures minus their highest co- 
ordinate vertex (HCV).S Similarly, the favored arachno structure 
has the largest open face, corresponding to removal of the HCV 
and a neighbor from a closo molecule. In both cases a larger open 
face is said to be preferred because it gives the most stable frontier 
 orbital^.^ It is worth pointing out that on this argument the 
arachno structure formed by removal of two distant HCVs may 
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Table 11. Comparison of ETSH and EH Energies for nido- and arachno-Boranes' 

nido-Boranes 
(c50) B6H64- (c2u) (C4A 

EH ETSH EH ETSH EH ETSH 
-4.439 (X2) P,,' -5.265 -4.439 DO' -4.045 -3.726 B-2: -3.799 

... ... ... ... 
-9.604 (X2) D*,+ -10.196 -8.544 

-10.598 (X2) D*2+ -10.655 -9.147 
-10.711 Po+ -1 1.052 -10.467 
-12.546 (X2) P*1+ -13.595 -10.583 
-22.547 S" -18.256 -10.705 

-12.312 
-12.767 
-22.831 

... ... ... 
D*,+ 

-8.136 -10.609 D+2c= 
-9.947 -1 1.379 PO+ 

p*,+ 

-5.599 -9.200 (X2) 

-10.683 -11.749 (X2) 
-11.146 -22.336 S" 
-12.570 
-13.825 
-18.459 

... 
-9.755 

-10.609 
-1 1.408 
-12.320 
-18.209 

arachno- B loH I 06- ( C2J 

EH ETSH EH ETSH EH ETSH 
-2.076 FA' -4.739 -11.014 DA,+ -1 1.230 -12.610 P+ -14.951 

... ... ... -1 1.063 
-7.196 Do- -5.233 -1 1.086 
-8.308 pc+ -6.920 -1 1.299 
-9.858 F2r -10.310 -1 1.353 

-10.525 F3c+ -10.61 1 

'See footnote a of Table I. 

have a greater stabilization than when two neighbors are removed. 
For example, in Bl,,Hlob the choice is between two five-membered 
rings and one six-membered ring. On simple Hiickel grounds an 
isolated arachno structure would be preferred. Extended Hiickel 
calculations have shown that for the bare B,H," arachno clusters 
the lowest energy isomers have isolated open faces.I2 It is only 
when the open faces are "stitched up" by bridging protons that 
the experimentally favored nearest-neighbor arachno isomer be- 
comes the most stable in EH. Table I1 shows some results of an 
ETSH treatment of nido clusters. As before, the origin of co- 
ordinates is at the center of mass and the z axis along the principal 
axis of rotation. 

Consider first the C,, B5HS4- formed by removal of a vertex 
from octahedral B6H62-. The fit to E H  results is as good as for 
a closo structure, reproducing the HOMO and LUMO, degen- 
eracies, M O  order, and, most important, the correct n + 2 orbital 
count in agreement with Wade's rules.* Also in Table 11, we 
compare the B6H6& clusters formed by abstraction of four- and 
five-coordinate vertices from the closo pentagonal bipyramid. In 
both extended Hiickel and ETSH, the experimentally preferred 
C5, structure has the lower total energy. The ETSH fit to the 
E H  energy levels is still fairly good for the C,, isomer but is very 
much worse for the C,, unstable isomer. In particular the 
HOMO-LUMO gap is only half the E H  value, making the 
electron count incorrect. On this limited evidence, it seems that 
a straightforward application of the modified TSH calculation 
can predict the correct nido structures, even though it gives a 
poorer quantitative fit to extended Hiickel results. Selection of 
the orbitals to be discarded also becomes more difficult for nido 
structures where the r/ii distinction is not so clear as for closo 
clusters. 

When arachno isomers are considered, the results deteriorate 
further and, as the single example in Table I1 shows, are likely 
to be useless for predictions of structures. 

That a TSH treatment based on the spherical group should fail 
for large arachno clusters is not surprising. As the nuclearity rises 
and symmetry elements disappear, the number of MOs belonging 
to the same symmetry species increases. Thus the number of 
interactions allowed by symmetry but ignored in TSH leads to 
a poorer fit for large, low-symmetry clusters. As we have seen, 
this is not a serious problem for closo-boranes but becomes acute 
for arachno clusters. For the same reason, it is possible that the 
TSH model will give a poor fit for larger "clo~o" clusters, although 
in the limit of infinite nuclearity spherical symmetry is regained. 

In summary of this section, the extended TSH treatment gives 
a detailed picture of the bonding in closo-borane cages which is 
practically equivalent to an extended Hiickel treatment but retains 

-1 1.565 -12.995 -15.310 
-1 1.727 -13.126 -16.853 
-1 1.910 -23.475 S" -18.792 
-12.987 

the conceptual simplicity of Stone's TSH theory. Useful results 
are also found for nido clusters, but the arachno clusters probably 
represent the limit of this treatment for boranes. 
5. Applications: Electron-Precise Clusters 

The electron-precise clusters C,H, form a class of compounds 
with an electron count different from that of boranes. They adopt 
structures based on three-connected polyhedra (tetrahedron, 
trigonal prism, cube, pentagonal prism, .... pentagonal dodeca- 
hedron) held together by 3n/2 skeletal electron pairs, one pair 
for each edge. Johnston and Mingos3I have given a qualitative 
discussion of the original TSH theory for these compounds. In 
order to test whether our ETSH treatment is capable of repro- 
ducing the correct electron count and the detailed M O  pattern 
of EH calculations for electron-precise as well as electron-deficient 
structures, we performed parallel ETSH and E H  calculations 
(Table 111). Since the known molecules of tetrahedrane, prismane, 
cubane, pentaprismane, and dodecahedrane have skeletons that 
are the duals of deltahedra, a plausible sequence of model ge- 
ometries was found by taking duals of the borane deltahedra used 
in the borane calculations. All geometries were based on Rcc = 
154 pm, RcH = 114 pm (equilateral where possible). Standard 
E H  parameters for carbon were used. As the pattern of energy 
levels rather than precise numerical detail is of interest here, sp 
hybrids were used as for boranes, leading to a" = -16.4 eV, a" 
= -1 1.4 eV. 

Table I11 shows that the ETSH theory predicts the correct 
electron count for structures through CloHlo, and the numerical 
comparison with E H  results is of the same quality as found for 
closo-boranes. Errors due to fixed hybridization are larger for 
carbon clusters but could be reduced by a more suitable choice 
of s, p mixture for the u orbital. Again the errors are small a t  
the HOMO/LUMO borderline. Note that the "extra" bonding 
orbitals come about by a lowering in energy of ( n  - 2)/2 of the 
n ii MOs from antibonding (in deltahedra) to bonding (in 
three-connected polyhedra) to give a total count of 3 n / 2  (see also 
ref 31). The versatile tetrahedron is both deltahedral and 
three-connected (also closo and nido). Its frontier orbitals show 
r/ii mixing as discussed earlier. 

It is gratifying, but perhaps not altogether surprising, that a 
theory based on the ideal spherical cluster should work well for 
the closed deltahedral and their duals, the three-connected 
polyhedra. Planar conjugated systems like benzene might be 
thought to be "insufficiently nearly spherical" and to be beyond 
the scope of TSH theory. The results are of course well-known 

(31) Johnston, R. L.; Mingos, D. M. P. J .  Organomet. Chem. 1985,280,407. 
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Table 111. Comparison of ETSH and EH Energies for Three-Connected Hydrocarbon Clusters' 
CIH4 ( T d )  C6H6 ( D 3 h )  

EH ETSH EH ETSH 
-4.335 (X3) P* -4.335 -6.155 PO" -6.155 

... ... ... ... ... ... 
-11.948 (X2) D"/D" -1 1.948 -1 1.688 (X2) Dii' -1 1.929 
-14.345 (X3) P+ -15.162 -12.882 (X2) D*l" -12.098 
-29.5 32 S" -24.354 -14.707* DO+ -14.806 

-14.700 (X2) P*1+ -16.831 
-14.778 PO+ -1 8.204 
-30.469 S" -24.874 

EH ETSH EH ETSH 
-1.686 (X3) P7 -1.686 -2.091 (X2) P -3.742 

... ... ... 
-12.620 (X3) D+ -12.620 
-12.118' (X3) D" -12.880 
-15.098 (X2) D0,2c+ -15.098 
-15.142 (X3) P+ -19.109 
-3 1.042 S" -25.159 

"See footnote a of Table I. 

without TSH theory, but it is interesting to see how the Stone 
classification works for an example. For benzene our ETSH 
treatment leads to the correct configuration 

with a degenerate LUMO Di2* followed by E3cS. Note that the 
presence of null and redundant functions in the D shell forces us 
to include F orbitals, which are necessary to provide an Iml = 3 
function with the right number of nodes for fully antibonding 
orbitals. Thus ETSH theory can reproduce the Huckel-type 
orbitals of conjugated a systems that are far from spherical. 

6. Transition-Metal Clusters 
Stone has given a qualitative discussion of the application of 

his TSH ideas to transition-metal  cluster^^*^ by considering all 
nine valence orbitals (s, p, d) on each metal atom. In principle, 
we could carry out an ETSH treatment along the same-lines. A 
set of n atoms produces 3n a, 2n a, and 2n_?r, n 6, and n 6 orbitals. 
Interactions of two types, a-a-6 and i -6, could be included by 
solving 6 X 6 and smaller matrices. 

However, a smaller and simpler problem, more directly anal- 
ogous to the treatment of boranes, can be envisaged if we use the 
isolobal analogy to guide the choice of basis functions. For ex- 
ample, a metal atom with three exo-CO ligands attached to it 
may be considered to use three orbitals in exo bonding and three 
for skeletal bonding, with three more occupied but effectively 
n o n b ~ n d i n g . ~ ~ ~  Thus the effective basis for skeletal TSH calcu- 
lations reduces to an spudb hybrid ( a )  and two tangential pde (P) 
hybrids. This problem is no more difficult than the main-group 
calculation, differing only in using different hybrids. Other metal 
clusters with different ligand coordination require explicit con- 
sideration of 6 orbitals.32 

... 
-1 1.827 (X2) 
-12.515 (X2) 
-12.941 (X2) 
-13.125 (X2) 
-1 5.135* 
-14.811 (X2) 
-15.239 
-15.611 (X2) 
-31.128 

... ... 
F*Z" -1 1.283 
D*lr -12.374 
F*z+ -12.757 
D+ -14.506 

-15.174 
-15.808 

P+ -19.307 
-20.973 

S" -25.104 

7. Conclusions 
In this paper we have modified the original TSH theory to 

produce a practical scheme for calculations of the extended Huckel 
type. This allows us to test the various assumptions and ap- 
proximations of the theory. The main points of the extended TSH 
treatment are (i) consideration of each orbital energy individually, 
(ii) use of an extended Huckel parameterization of the one-electron 
Hamiltonian, (iii) explicit calculation of u-P interaction for each 
alm, alm pair, and (iv) a specific selection procedure for discarding 
redundant functions. 

Results for boranes broadly confirm the qualitative conclusions 
of Stone, adding illuminating detail on deviations from Wade's 
rules, and are comparable in accuracy and utility to the full 
extended Huckel procedure. In particular our ETSH procedure 
gives energies of the correct point-group degeneracy and does not 
introduce spurious higher degeneracies. Furthermore, fairly drastic 
departures from pseudospherical symmetry are permitted. A brief 
discussion of benzene showed that the theory is not limited to 
deltahedra and their duals but can treat some planar systems. 
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